N ovel synthesis of degradation products of carotenoids, megastigmatrienone analogues and blumenol-A

N obuhiko Ito, ${ }^{\text {a }}$ Takeaki E toh, ${ }^{\text {a }} \mathrm{H}$ isahiro H agiwara ${ }^{\mathrm{b}}$ and M ichiharu Kato ${ }^{\mathrm{C}}$
${ }^{\text {a }}$ R esearch and D evelopment L aboratories, Soda A romatic C 0., L td., 1573-4, F unakata, N oda, Chiba 270-02, J apan
${ }^{\text {b }}$ Graduate School of Science and Technology, N iigata U niversity, 8050, 2 N ocho, Ikarashi, Niigata 950-21, J apan
${ }^{\text {c }}$ Institute for Chemical Reaction Science, Tohoku U niversity, K atahira, 2 chome, A oba-ku, Sendai 980-77, J apan

Abstract

Synthesis of 4-alkylidene-3,5,5-trimethylcyclohex-2-enones 7 has been achieved utilising 1,4-conjugate dehydrobromination of allylic bromides 5 as a key step. This chemical transformation is applied to the synthesis of degradation products of carotenoids: megastigmatrienones 7e/1-4, 4-methylene-3,5,5-tri-methylcyclohex-2-enone 7a, 4-(3-hydroxybutylidene)-3,5,5-trimethylcyclohex-2-enone 9, 1,3,7,7-tetra-methyl-2-oxabicyclo[4.4.0]dec-5-en-9-one 10a-b and 3,4,7,8-tetrahydro-4,4,7-trimethylnaphthalen-2(6H)one 15. A novel photoisomerisation of 4-[(Z)-3-acetoxybut-2-enyl]-4-hydroxy-3,5,5-trimethylcyclohex-2enone 19 to 4-[(E)-3-acetoxybut-2-enyl]-4-hydroxy-3,5,5-trimethylcyclohex-2-enone 20 enables us to synthesise blumenol-A 21.

A large number of C_{13} degradation products of carotenoids have been isolated from various essential oils, black tea, and tobaccos. They are considered to be produced biogenetically by oxidative cleavage of conjugated double bonds of cyclic carotenoids; ${ }^{1}$ for example lutein which is well-known as a colouring substance. M ost C_{13} compounds commonly possess a carbonyl function at the $\mathrm{C}-3$ position in the trimethylcyclohexane ring. Although they usually exist as minor flavour and fragrance components in essential oils, their importance has been well recognised. M egastigmatrienones $7 \mathrm{e} / \mathbf{1 - 4}$, the C_{13} degradation product of carotenoids possessing a 4 -alkylidene- $3,5,5$-tri-methylcyclohex-2-enone skeleton, and blumenol-A 21 are known as key tobacco flavouring components. ${ }^{2}$

We report here a general and efficient synthesis of 4 -alkyl-idene-3,5,5-trimethylcyclohex-2-enones 7^{3} utilising 1,4 -conjugate dehydrobromination of the allylic bromides 5 and its application to the synthesis of degradation products, i.e. megastigmatrienones $7 e / 1-4,4$-7 4 -methylene $-3,5,5$-trimethyl-cyclohex-2-enones 7a, ${ }^{8,9}$ 4-(3-hydroxybutylidene)-3,5,5-tri-methylcyclohex-2-enone $9,{ }^{10} 1,3,7,7$-tetramethyl-2-oxabicyclo-[4.4.0]dec-5-en-9-one 10a- $\mathbf{b}^{11,21}$ and 3,4,7,8-tetrahydro-4,4,7trimethylnaphthalen $2(6 \mathrm{H})$-one $15 .{ }^{12}$ The synthesis of blumenol-A 21^{13} by photoisomerisation of the (Z)-olefin to the (E)-olefin is also reported.

Results and discussion

3,5,5-Trimethylcyclohex-2-ene-1,4-dione (oxophorone) 1 has been frequently used as the starting material in the synthesis of cyclic carotenoids ${ }^{14}$ and flavouring components. ${ }^{6,15,16}$ Recently, we have reported the practical preparation of oxophorone 1 from 3,5,5-trimethylcyclohex-3-enone by transition metal complex-catalysed molecular oxygen oxidation. ${ }^{17}$ In the present study, we employed oxophorone 1 as the common starting material. Reactions of several alkyllithium compounds with keto acetal 2, readily obtainable from oxophorone 1 according to the procedure by Shibagaki et al., ${ }^{16}$ afforded cyclohexenols 3 (42-92\%) (Scheme 1). Bromination of the cyclohexenols $\mathbf{3}$ with phosphorus tribromide $\left(\mathrm{PBr}_{3}\right)$ in pyridine and toluene proceeded by displacement of the hydroxy group with a bromine atom together with a double-
bond migration to give the allylic bromides 5. Of these, the cyclohexenol 3a provided a mixture of the allylic bromide 5a and the dehydrobromination product the dienone 6 a in a 1:1 ratio as the result of an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction pathway. The stereochemistry of the allylic bromides 5 was determined from ${ }^{1} \mathrm{H}$ NM R analysis, i.e. the equatorial methine proton ($\delta 4.3$, d, J 3 Hz) at the C-6 position couples to the equatorial proton at the $\mathrm{C}-10$ position in a W coupling fashion. The axial proton at the C-10 position appeared at lower field than the equatorial one ($\Delta \delta=0.9 \mathrm{ppm}$) owing to the 1,3-diaxial relationship with the bromine atom. The bromides 5 were subjected to subsequent dehydrobromination without further purification because of their instability to heat. A lthough numerous methodologies to achieve dehydrobromination have been reported, little is known about 1,4-conjugate dehydrobromination. ${ }^{18} \mathrm{~A}$ ttempted dehydrobromination of the allylic bromides 5 with potassium tert-butoxide in dimethyl sulfoxide (DMSO) or triethylamine failed. However, the 1,4-conjugate dehydrobromination was accomplished upon treatment with a stoichiometric amount of 1,8-diazabicyclo[4.3.0]undec-7-ene (D BU) in refluxing toluene for 5 h , thus affording the dienes $6(49-60 \%)$. Under the same reaction conditions, the bromide 5c behaved exceptionally and was recovered unchanged. The desired diene 6c was, however, obtained (20% yield), when the bromide 5 c was heated at $120^{\circ} \mathrm{C}$ for 2 h . Both the stereostructures and the ratio of the dienes $\mathbf{6} \mathbf{b}$ and $\mathbf{6 d}$ were confirmed by inspection of their ${ }^{1} \mathrm{H}$ NMR spectra. A asen et al. reported ${ }^{4}$ that for megastigmatrienone $\mathbf{7 e} / \mathbf{1}$, which possesses a ($4 Z$)-double bond, the gem-dimethyl and the vinylmethyl signals appear at higher field by 0.16 ppm and at lower field by 0.21 ppm , respectively, than those for the (4E)-isomer 7e/4 (Scheme 2). This fact was useful for assignment of stereochemistry to the dienes $\mathbf{6 b}$ and 6d, the ratios for the geometrical isomers of which are shown in Scheme 1. Hydrolysis of the dienes 6 with aqueous hydrochloric acid in THF provided the dienones 7 (81-92\%); compounds 7 a and 7 e are natural products. ${ }^{5,8}$ Compound 7a was used as an intermediate for a diterpenoid synthesis. ${ }^{9}$ Since we had succeeded in constructing an extended $\alpha, \beta, \gamma, \delta$ unsaturated ketone system by use of a novel 1,4-conjugate dehydrobromination, we next focused our attention on the synthesis of C_{13} degradation products of carotenoids.

1

2

3a $\quad \mathrm{R}^{1}=\mathrm{Me}$
3b $\quad \mathrm{R}^{1}=\mathrm{Et}$
3c $\quad \mathrm{R}^{1}=\operatorname{Pr}^{\mathrm{i}}$
3d $\mathrm{R}^{1}=\mathrm{Bu}$

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{R}{ }^{1} \mathrm{Cl}$ or $\mathrm{R}^{1} \mathrm{Br}, \mathrm{Li}, \mathrm{THF}$; ii, PBr_{3}, pyridine, toluene, $-10^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii, D BU, toluene, reflux, 5 h ; iv, aq. HCl , THF, $25^{\circ} \mathrm{C}$

Reaction of the keto acetal $\mathbf{2}$ with but-1-enyllithium prepared from lithium metal and 4-bromobut-1-ene afforded the cyclohexenol $3 \mathrm{e}(80 \%)$, which was then converted into the allylic bromide 5 e with PBr_{3}. Treatment of $\mathbf{5 e}$ with DBU in refluxing toluene afforded a mixture of deconjugated trienes 6e/5-8 and fully conjugated trienes $6 \mathrm{e} / 1-4$ in 60% yield. Presumably, the trienes $6 \mathrm{e} / 5-6$ are the initial products, and the trienes $6 \mathrm{e} / \mathbf{1 - 4}$ and $6 \mathrm{e} / \mathbf{7 - 8}$ could be formed from $\mathbf{6 e} / \mathbf{5 - 6}$ by DBU -catalysed migration of the terminal and exocyclic double bonds, respectively. The mixture of trienes 6 e was deprotected with aqueous hydrochloric acid in TH F, to give a mixture of the trienones 7 e (82%). Both trienes 6 e and enones 7 e were obtainable as a mix ture of geometrical isomers, as a result of the double bonds in the side chain, which we were unable to separate by silica gel chromatography; thus we used capillary gas chromatography to separate the isomers and determine the product ratios. The geometrical stereostructures present, however, remained uncharacterized (see Experimental section). The geometry of the trienones 7 e were confirmed by GC-FT/IR-M S, wherein the absorption bands at 910 and $990 \mathrm{~cm}^{-1}$ were assigned to the terminal allylic olefin and the $\alpha, \beta, \gamma, \delta$-unsaturated ketone, respectively. When a mixture of the trienones 7 e was heated in refluxing xylene in the presence of a catalytic amount of DBU for 4 h , an equilibrium of double bond isomers was attained and gave a mixture of megastigmatrienones $7 \mathrm{e} / \mathbf{1 - 4} \mathbf{4}^{4-7}$ and $\mathbf{7 e} / \mathbf{7}^{4}$ in 86% yield. These five isomers, all of which occur in nature,
were detected by capillary gas chromatography, and isolated by repeated silica gel chromatography (Scheme 2). The spectral data (IR and ${ }^{1} \mathrm{H} N M R$) for $\mathbf{7 e} / \mathbf{1 - 4}$ and $\mathbf{7 e} / 7$ were identical with those described in the literature. ${ }^{4}$

Treatment of the diacetal $\mathbf{3 f}$, readily obtainable from $\mathbf{2}$ by the published procedure, ${ }^{16}$ with PBr_{3} under our standard conditions afforded the allylic bromide 5f, which was transformed into the dienes $6 f(49 \%)$ with D BU in refluxing toluene. Treatment of the diene $\mathbf{6 f}$ with aqueous hydrochloric acid in THF at room temperature gave 3 -oxo- α-ionone $\mathbf{8}^{\mathbf{2 0}}$ as the major product as a result of hydrolysis of the acetal groups and concomitant olefin migration of the initial product, the diketone 7 ff . The diketone 7 f was obtained in 70% yield by treatment of the diene $6 f$ with silica gel impregnated with aqueous $37 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. Chemoselective reduction of the diketone $7 f$ with zinc borohydride $\left[\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}\right]$ provided the ketol 9^{10} (69\%). Finally, treatment of the compound 9 with NaH afforded a diastereoisomeric mixture (a $1: 9$ ratio) of the bicyclic compounds 10a-b ${ }^{21}$ (48\%). The compounds, 9 and 10a,b, are natural products isolated from essential oil ${ }^{22}$ and tobaccos ${ }^{11}$ (Scheme 3).

Starting with the cyclohexenol 3a an alternative synthesis of the dienone 7a was carried out. Deprotection of 3a provided hydroxy ketone 11a (Scheme 4), bromination of which followed by dehydrobromination under our standard reaction conditions, afforded the dienone 7a (27\%). Alternatively, treatment of 11a with PBr_{3} and DBU in chloroform at room temperature for 2 h resulted in its one-pot conversion into 7a (59\%). U nfortunately, attempted conversion of other hydroxy ketones, derived from $\mathbf{3 b}$-d and aqueous hydrochloric acid, into the corresponding enones 7b-d using the above $\mathrm{PBr}_{3}-$ DBU $-\mathrm{CHCl}_{3}$ reagent failed; such reactions gave only a complex mixture of products. H owever, it is noteworthy that this one-pot bromination-dehydrobromination was succesfful in the synthesis of the tetrahydronaphthalenone 15, a compound isolated from tobacco, and known as a key flavouring component. ${ }^{12}$ An earlier synthesis of this was reported, but with less satisfactory results in terms of product purity. ${ }^{12}$ Our synthesis started from hydroxy diketone $12,{ }^{16}$ obtained from hydrolysis of the diacetal $\mathbf{3 f}$, in which an intramolecular vinylogous aldol condensation followed by dehydration afforded the hydroxy dienone 13 (70\%). Regioselective hydrogenation of the γ, δ-olefin of 13 using $5 \% \mathrm{Pd}-\mathrm{C}$ in methanol in the presence of a catalytic amount of KOH gave the hydroxy enone 14 (78\%) which, upon treatment with PBr_{3} and DBU in CHCl_{3}, provided tetrahydronaphthalenone 15 (69\%).
Finally, weturned our attention to the synthesis of blumenolA 21. ${ }^{13}$ This natural product was isolated as a minor component from several natural sources, ${ }^{19,23}$ and is well-known as both an endogeneous regulator of stomatal aperture ${ }^{24}$ and a flavouring component ${ }^{2}$ of tobacco. In this study the acetylenic alcohol 16, obtainable from the keto acetal 2 by a published procedure, ${ }^{6,21}$ was adopted as the starting material (Scheme 5). A fter acetylation (92\%) of 16, stereoselective hydrogenation of the resulting acetylene $\mathbf{1 7}$ to the (Z)-olefin $\mathbf{1 8}$ was accomplished in 70% yield using the Lindlar catalyst under a hydrogen atmosphere. Hydrolysis of 18 provided the (Z)-olefinic ketone 19 (84\%). A tempted isomerisation of the (Z)-olefinic ketone 19 to the(E)olefinic ketone 20 using toluene-p-sulfinic acid ${ }^{25}$ and $\mathrm{Pt}-\mathrm{Al}_{2} \mathrm{O}_{3}{ }^{26}$ gave a mixture of products, from which the desired (E)-olefinic ketone $\mathbf{2 0}$ was absent. H owever, when a methanolic solution of 19 was irradiated with a mercury high-pressure immersion lamp (100 W) through a Pyrex filter at $20^{\circ} \mathrm{C}$ for 4.5 h , the (E) -olefinic ketone 20 was isolated (75%) along with the rearranged product $22{ }^{27}$ (12\%). It is noteworthy that the present photoisomerisation in the absence of a sensitizer gave a high proportion of (E)-olefinic ketone 20 (20/19 = 97:3). Compound 20 was transformed into blumenol-A 21 (85\%) upon treatment with NaOMe in methanol and CHCl_{3}. The photochemical isomerisation of 19

Scheme 2 Reagents and conditions: i, 4-bromobut-1-ene, Li, THF, room temperature; ii, $\mathrm{PBr} r_{3}$, pyridine, toluene, $-10^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii, D BU, toluene, reflux, 5 h ; iv, aq. $\mathrm{HCl}, \mathrm{THF}, 25^{\circ} \mathrm{C}$; v, DBU, xylene, reflux, 4 h

Scheme 4 R eagents and conditions: i, HCI, TH F, room temperature; ii, PBr_{3}, pyridine, toluene, $-10^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii, D BU, toluene, reflux, 5 h ; iv, $\mathrm{PBr}_{3}, \mathrm{DBU}, \mathrm{CHCl}_{3}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h} ; \mathrm{v}, \mathrm{NaOH}, \mathrm{MeOH} ; \mathrm{vi}, \mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{KOH}$, MeOH
methyl-2-oxabicyclo[4.4.0]dec-5-en-9-one 10a-b, and 3,4,7,8-tetrahydro-4,4,7-trimethylnaphthalen-2(6H)-one 15. Photoisomerisation of the (Z)-olefin to the (E) -olefin was successfully applied to the synthesis of blumenol-A from the acetylenic alcohol 16.

Experimental

All mps were determined with a M ettler FP62 hot-stage apparatus and are uncorrected. IR spectra were recorded on a

16
ii

18

20

21
Scheme 5 R eagents and conditions: $\mathrm{i}, \mathrm{Ac}_{2} \mathrm{O}$, pyridine, 12 h ; $\mathrm{ii}, \mathrm{H}_{2}$, Lindlar cat., $20^{\circ} \mathrm{C}$; iii, aq. $\mathrm{HCl}, \mathrm{THF}$, room temperature, 5 h ; iv, hv, M eOH , $20^{\circ} \mathrm{C}, 4.5 \mathrm{~h} ; \mathrm{v}, \mathrm{NaOM}$ e, $\mathrm{M} \mathrm{eOH}, \mathrm{CHCl}_{3}$, room temperature, 6 h

JA SC O FT/IR - 7000 spectrophotometer and a Hewlett Packard 59970 Chem. Station. ${ }^{1 H}$ N M R spectra were recorded on JE OL LA - $400(400 \mathrm{M} \mathrm{Hz}$), Varian (300 M Hz), Varian (100 M Hz) and Hitachi R-24B (60 MHz) spectrometers. J Values are given in Hz . M ass spectra were run on a Hewlett Packard 5992B, H itachi M-80B with a H itachi M 0101 data system, and H itachi M - 4100 with a H ewlett Packard A 4032A data system, with or without a capillary gas chromatographic column. C apillary gas chromatographic analyses were carried out on Shimadzu GC7A and Hewlett Packard 5890 series II instrument. TH F, pyridine, chloroform, benzene, and toluene were used after drying with $4 \AA$ molecular sieves, $80-100$ mesh. Extracts obtained on aqueous work-up of the reaction mixtures were washed with brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, unless otherwise stated. Identifica-
tion of the synthetic known compounds and natural products synthesised in the present study was carried out by comparison of their spectral data with those reported in the literature

7,8,9,9-Tetramethyl-1,4-dioxaspiro[4.5]dec-6-en-8-ol 3a ${ }^{3}$
Into a mixture of the keto acetal $2(10.0 \mathrm{~g}, 51.0 \mathrm{mmol})$ and lithium metal ($0.89 \mathrm{~g}, 128 \mathrm{mmol}$) in THF ($80 \mathrm{~cm}^{3}$) was bubbled methyl chloride at $10-15{ }^{\circ} \mathrm{C}$ until disappearance of the lithium metal; stirring was then continued for 1 h at room temperature. The reaction mixture was quenched by the addition of icecold aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ after which it was extracted with ethyl acetate The combined extracts were washed with brine, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and evaporated. The crystalline residue was recrystallised from hexaneto afford the title compound $\mathbf{3 a}$ ($9.90 \mathrm{~g}, 92 \%$), $\mathrm{mp} 97-98{ }^{\circ} \mathrm{C}$ (lit., ${ }^{3} 94{ }^{\circ} \mathrm{C}$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3500(\mathrm{OH})$ and 1675 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.98(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 1.04(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me})$, 1.22 ($3 \mathrm{H}, \mathrm{s}, 8-\mathrm{M} \mathrm{e}$), $1.44(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.76\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right), 1.80$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,7-\mathrm{Me}$), $3.89\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), and $5.30(1 \mathrm{H}$, br s, 6-H); m/z 197 (M ${ }^{+}$- M e, 12\%), 156 (100), 126 (39), 113 (33), 112 (34), 111 (41), 87 (66), 69 (34), 43 (97) and 41 (36).

Representative procedure for the preparation of cyclohexenols

 3b-d from the keto acetal 28-E thyl-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-6-en-8-ol 3b. ${ }^{3}$ To a stirred mixture of small pieces of lithium metal (1.05 g , 151 mmol) in TH F ($80 \mathrm{~cm}^{3}$) was added dropwise a solution of ethyl bromide ($7.89 \mathrm{~g}, 72.4 \mathrm{mmol}$) and the keto acetal 2 (10.0 $\mathrm{mg}, 51.0 \mathrm{mmol})$ in THF ($10 \mathrm{~cm}^{3}$) under nitrogen at room temperature. Stirring was continued for 3 h after which the reaction mixture was quenched by addition to it of ice-cold aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and then extracted with ethyl acetate. Evaporation of the extract left crystals which were recrystallised from hexane to give the title compound $3 \mathrm{bb}(8.44 \mathrm{~g}, 73 \%)$, mp $79-80^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3475(\mathrm{OH}), 2980(\mathrm{C}-\mathrm{H}), 1660(\mathrm{C}=\mathrm{C})$ and 1090(C-0); $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 0.93\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right), 0.99(3 \mathrm{H}, \mathrm{s}$, 9-M e), 1.08 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 1.41 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), 1.80 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2$, 7-M e), 1.56-2.25 ($4 \mathrm{H}, \mathrm{m}$), $3.92\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and 5.40 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$).
8-I sopropyl-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-6-en-8-ol
3c. The reaction of lithium metal ($1.76 \mathrm{~g}, 254 \mathrm{mmol}$) in THF ($121 \mathrm{~cm}^{3}$) with isopropyl bromide ($15.0 \mathrm{~g}, 122 \mathrm{mmol}$) and the keto acetal $2(16.79 \mathrm{mg}, 85.7 \mathrm{mmol})$ in THF ($16 \mathrm{~cm}^{3}$) followed by purification of the crude product by chromatography on silica gel with ethyl acetate-hexane ($1: 4$) gave the title compound $3 \mathrm{c}(8.13 \mathrm{~g}, 42 \%), \mathrm{mp} 45-47^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3459$ (OH), $2952(\mathrm{CH}), 1657(\mathrm{C}=\mathrm{C})$ and $1084(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz})$ $1.05(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 9,2 \times \mathrm{CH} \mathrm{Me}), 1.01(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), $1.08(3 \mathrm{H}, \mathrm{s}$, 9-M e), 1.49 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), $1.63[1 \mathrm{H}, \mathrm{d}$ (of AB q), J $15,10-\mathrm{H}$], 1.80 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,7-\mathrm{M} \mathrm{e}$), $2.18[1 \mathrm{H}, \mathrm{d}$ (of A B q), J 15, 10-H], 3.92 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and $5.42(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 240(\mathrm{M}+$, $0.1 \%), 197$ (100), 153 (25), 125 (25), 111 (28), 73 (41) and 43 (52) (Found: $\mathrm{M}^{+}, 240.1737 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $\mathrm{M}, 240.1724$).
8-B utyl-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-6-en-8-ol 3d. ${ }^{3}$ The reaction of lithium metal ($1.05 \mathrm{~g}, 151 \mathrm{mmol}$) in THF (80 cm^{3}) with butyl chloride ($6.70 \mathrm{~g}, 72.4 \mathrm{mmol}$) and the keto acetal $2(10.0 \mathrm{mg}, 51 \mathrm{mmol})$ in TH F ($10 \mathrm{~cm}^{3}$) afforded the known title compound 3d ($10.20 \mathrm{~g}, 79 \%$), $\mathrm{mp} 46-47^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $3503(\mathrm{OH}), 2952(\mathrm{C}-\mathrm{H}), 1665(\mathrm{C}=\mathrm{C})$ and $1095(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(60$ M Hz) $0.98(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), $1.06(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), $1.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2$, $7-\mathrm{M} \mathrm{e}), 0.95-2.25(12 \mathrm{H}, \mathrm{m}), 3.92\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and 5.36 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$)

G eneral procedure for the preparation of the allylic bromides 5a-d from cyclohexenols 3a-d

To a stirred solution of each of the cyclohexenols 3a-d (2.21 mmol) and pyridine ($1.1 \mathrm{~cm}^{3}$) in toluene ($5 \mathrm{~cm}^{3}$) was added dropwise a solution of $\mathrm{PBr}_{3}(712 \mathrm{mg}, 2.63 \mathrm{mmol}$) in toluene (1.7 cm^{3}) under nitrogen at $-10^{\circ} \mathrm{C}$, and stirring was continued for 1 h . Each reaction mixture was then quenched by addition of aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with toluene. The combined
extracts were washed with brine, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated below $35^{\circ} \mathrm{C}$ to give the crude products. These were subjected to the next reaction without further purification because of their instability to heat.

6-B romo-7,8,9,9-tetramethyl-1,4-dioxaspiro[4.5]dec-7-ene 5a. The reaction of 3a with PBr_{3} afforded a mixture (390 mg) of the title compound 5 a and diene $\mathbf{6 a}$ in a ratio of $1: 1$ (from ${ }^{1} \mathrm{H}$ NM R). The title compound 5 a ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2970(\mathrm{OH})$ and $1640(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.08(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{M} \mathrm{e}), 1.19(3 \mathrm{H}, \mathrm{s}$, 9-M e), 1.57 [1 H , dd (of $A B$ q), J $14,3,10-\mathrm{H}$], $1.67(3 \mathrm{H}, \mathrm{s}$, $8-\mathrm{Me}$), 1.80 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,7-\mathrm{M} \mathrm{e}$), $2.43[1 \mathrm{H}, \mathrm{d}$ (of A B q), J $14,10-$ H], $4.00\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 2 \mathrm{CH}_{2} \mathrm{O}\right)$ and $4.30(1 \mathrm{H}, \mathrm{br}$ s, $6-\mathrm{H})$.

6-B romo-8-ethyl-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-7-ene 5b. Semicrystals (78\%); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 2960$ (CH), 1639 (C=C) and $1082(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.02\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{CH}_{2} \mathrm{Me}\right.$ e), 1.01 (3 $\mathrm{H}, \mathrm{s}, 9-\mathrm{M} \mathrm{e}$), 1.18 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 1.53 [1 H , dd (of AB q), J 14, 3, $10-\mathrm{H}$], $1.84\left(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}\right.$), $1.98\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 8, \mathrm{CH}_{2} \mathrm{Me}\right.$ e), $2.45[1 \mathrm{H}$, d (of AB q), J $14,10-\mathrm{H}$], $4.01\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and 4.29 (1 H, d, J 3, 6-H).

6-B romo-8-isopropyl-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-
7-ene 5c. Semicrystals (70%); $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 2950$ (C-H), 1635 ($\mathrm{C}=\mathrm{C}$) and $1096(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.01(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{M} \mathrm{e}), 1.20(3$ H, s, 9-M e), 1.16(3H,d,J 7, CHM e), 1.18 (3H,d,J 7, CHMe), $1.52[1 \mathrm{H}, \mathrm{dd}$ (of A B q), J $14,3,10-\mathrm{H}], 1.91$ ($3 \mathrm{H}, \mathrm{s}, 7-\mathrm{M} \mathrm{e}$), 2.44 [1 H, d (of AB q), J 14, 10-H], $3.99\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and 4.20 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3,6-\mathrm{H}$).

6-B romo-8-butyl-7,9,9-trimethyl-1,4-diox aspiro[4.5]dec-7-ene 5d. Semicrystals (73\%); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 2950$ (CH), 1638 (C=C) and $1095(\mathrm{C}-0) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.80-2.15(9 \mathrm{H}, \mathrm{m}), 1.09(3 \mathrm{H}, \mathrm{s}$, 9-M e), 1.17 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{M} \mathrm{e}$), 1.50 [1 H, dd (of AB q), J 14, 3, $10-\mathrm{H}$], 2.42 [$1 \mathrm{H}, \mathrm{d}$ (of AB q), J $14,10-\mathrm{H}$], $4.00\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}{ }^{-}\right.$ $\mathrm{CH}_{2} \mathrm{O}$) and $4.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3,6-\mathrm{H})$.

General procedure for preparation of the dienes $6 \mathrm{a}-\mathrm{d}$ from the allylic bromides 5 a -d
To a solution of each of the allylic bromides $\mathbf{5 a}$ - \mathbf{d} in toluene (5 cm^{3}) was added DBU ($337 \mathrm{mg}, 2.21 \mathrm{mmol}$) under nitrogen at room temperature. The reaction mixture was refluxed for 5 h , and after being cooled to room temperature was quenched with water, and extracted with toluene The combined extracts were washed with brine, dried $\left(\mathrm{M}_{\mathrm{gO}}^{4}\right.$) , and evaporated to give the crude product. This was chromatographed on silica gel with ethyl acetate-hexane (1:5) as an eluent to give the dienes 6 a-d.

7,9,9-T rimethyl-8-methylene-1,4-dioxaspiro[4.5]dec-6-ene 6a. The reaction of a mixture (380 mg) of the allylic bromide $\mathbf{5 a}$ and the diene 6a with DBU afforded the title compound 6a (246 $\mathrm{mg}, 59 \%$ from 3b); $v_{\max }$ (film)/ $\mathrm{cm}^{-1} 2975$ (CH), 1610 ($\mathrm{C}=\mathrm{C}$) and $1225(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.15(6 \mathrm{H}, \mathrm{s}, 2 \times 9-\mathrm{Me}), 1.78(2 \mathrm{H}, \mathrm{s}$, $\left.10-\mathrm{H}_{2}\right), 1.83\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,7-\mathrm{Me}\right.$), $3.89\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.04$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and $5.46(1 \mathrm{H}, \mathrm{br}, 6-\mathrm{H})$; m/z $194\left(\mathrm{M}^{+}, 55 \%\right)$, 179 (100), 149 (30), 138 (31), 119 (43), 107 (55), 91 (39) and 77 (20) (Found: $\mathrm{M}^{+}, 194.1351 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{M}, 194.1306$).
(E)- and (Z)-8-E thylidene-7,9,9-trimethyl-1,4-diox aspiro[4.5]-dec-6-ene $\mathbf{6 b}$. The reaction of the allylic bromide $\mathbf{5 b}(485 \mathrm{mg}$) with DBU ($337 \mathrm{mg}, 2.21 \mathrm{mmol}$) afforded the title compound $\mathbf{6 b}$ ($269 \mathrm{mg}, 60 \%$ from 3b), which was analysed by capillary GC (M ethyl Silicone, $50 \mathrm{~m}, 70-200^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$) and shown to be a mixture of isomers, $E / Z=49: 51$. The title compound (E)-6b; $v_{\max }($ vapour phase $) / \mathrm{cm}^{-1} 2958$ (CH), 1638 ($\mathrm{C}=\mathrm{C}$) and 1100 (C-O); m/z 208 (M ${ }^{+}, 49 \%$), 193 (100), 163 (28), 149 (24), 133 (31), 121 (83), 105 (27), 91 (34) and 77 (27) (Found: M^{+}, 208.1406. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{M}, 208.1462$). The title compound (Z)-6b; $v_{\text {max }}\left(\right.$ vapour phase)/cm ${ }^{-1} 2965$ (C-H), 1648 (C=C), 1616 ($\mathrm{C}=\mathrm{C}$) and 1099 ($\mathrm{C}-0$); m/z 208 ($\mathrm{M}^{+}, 47 \%$), 193 (100), 163 (25), 149 (24), 133 (28), 121 (83), 105 (28), 91 (35) and 77 (28) $(\mathrm{E}) /(\mathrm{Z})=51: 49 ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.10-1.31(6 \mathrm{H}, \mathrm{s}, 2 \times 9-\mathrm{Me})$ 1.73-1.95 (5 H, m), 1.82-2.03 (3 H, d, J 2, 7-M e), 3.95 ($4 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$) and 5.31-5.81 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}=\mathrm{CH}$) (Found: M^{+}, 208.1426. $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ requires M , 208.1462).

8-I sopropylidene-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-6-ene
$\mathbf{6 c}$. The reaction of $\mathbf{5 c}(452 \mathrm{mg})$ with DBU ($337 \mathrm{mg}, 2.21 \mathrm{mmol}$) for 2 h , followed by extraction of the product with ethyl acetate, afforded the title compound $\mathbf{6 c}$ ($96 \mathrm{mg}, 20 \%$ from $3 \mathbf{c}$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2940(\mathrm{CH}), 1630(\mathrm{C}=\mathrm{C})$ and 1090; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz})$ $1.28(6 \mathrm{H}, \mathrm{s}, 2 \times 9-\mathrm{Me}$), $1.73(3 \mathrm{H}, \mathrm{s},=\mathrm{CM} \mathrm{e}), 1.82(2 \mathrm{H}, \mathrm{s}$, $\left.10-\mathrm{H}_{2}\right), 1.88(3 \mathrm{H}, \mathrm{s},=\mathrm{CM}$ e), $1.94(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,7-\mathrm{M} \mathrm{e}), 3.95(4 \mathrm{H}$, $\mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$) and $5.53(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H})$; m/z $222\left(\mathrm{M}^{+}, 42 \%\right)$, 207 (50), 179 (13), 150 (45), 135 (100), 126 (73), 91 (36), 77 (20) and 41 (38) (Found: $\mathrm{M}^{+}-\mathrm{Me}$, 222.1629. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{M}-\mathrm{Me}$ 222.1618).
(E)- and (Z)-8-B utylidene-7,9,9-trimethyl-1,4-dioxaspiro-[4.5]dec-6-ene 6d. The reaction of 5d (498 mg) with DBU afforded the title compound $\mathbf{6 d}$ ($285 \mathrm{mg}, 56 \%$ from 3d) which was analysed by capillary GC (M ethyl Silicone, $50 \mathrm{~m}, 70-$ $200^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}^{-1}$) and shown to be a mixture of isomers $\mathrm{E} / \mathrm{Z}=40: 60$. The title compound (E$)$-6d; $v_{\max }$ (vapour phase)/ $\mathrm{cm}^{-1} 2967$ (CH), 1638 (C=C) and 1101 (C-O); m/z 236 (M ${ }^{+}$, 73%), 221 (100), 193 (42), 149 (60), 135 (96), 126 (54), 121 (82), 107 (53), 105 (42), 93 (52), 91 (68) and 77 (45) (Found: M^{+}, 236.1731. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ requires $\mathrm{M}, 236.1775$). The title compound (Z)-6d; $v_{\text {max }}\left(\right.$ vapour phase)/cm ${ }^{-1} 2967$ (CH), 1646 (C=C), 1616 ($\mathrm{C}=\mathrm{C}$) and 1100 ($\mathrm{C}-0$); m/z 236 ($\mathrm{M}^{+}, 73 \%$), 221 (100), 193 (43), 149 (55), 135 (93), 126 (50), 121 (78), 107 (50), 105 (41), 93 (52), 91 (68) and 77 (45) (Found: M^{+}, 236.1731. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}$ requires M , 236.1775); (E)/(Z) = 40:60; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.12-1.31$ ($6 \mathrm{H}, \mathrm{s}, 2 \times$ 9-M e), 0.81-2.50 ($9 \mathrm{H}, \mathrm{m}$), 1.87-2.04 (3 H, d, J 2, 7-M e), 3.97 $\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and $5.25-5.71(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}=\mathrm{CH})$.

Representative procedure for the preparation of the dienones 7a-d from the dienes 6a-d

4-M ethylene-3,5,5-trimethylcyclohex-2-enone 7a. ${ }^{3,9} \mathrm{~A}$ mixture of 6 a ($232 \mathrm{mg}, 1.2 \mathrm{mmol}$) and aqueous $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3} ; 0.89\right.$ $\left.\mathrm{cm}^{3}, 0.89 \mathrm{mmol}\right)$ in THF $\left(2.3 \mathrm{~cm}^{3}\right)$ was stirred for 5 h at room temperature and then extracted with ethyl acetate. The combined extracts were washed with aqueous NaHCO_{3} and brine, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated. The crude product was chromatographed on silica gel with ethyl acetate-hexane (1:2) as an eluent to give the title natural product 7a ($165 \mathrm{mg}, 92 \%$); $v_{\text {max }}$ (film)/cm ${ }^{-1} 2990(\mathrm{CH}), 1675(\mathrm{C}=0)$ and $1590(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(60$ $\mathrm{MHz}) 1.20(6 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{Me}$), 2.08 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,3-\mathrm{Me}$), 2.35 (2 $\left.\mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 5.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1, \mathrm{C}=\mathrm{CHH}), 5.46(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH} \mathrm{H})$ and $5.92\left(2 \mathrm{H}, \mathrm{br}\right.$ s, 2-H); m/z $150\left(\mathrm{M}^{+}, 53 \%\right), 135$ (26), 108 (45), 107 (100), 91 (39), 66 (37) and 39 (28).
(E)- and (Z)-4-E thylidene-3,5,5-trimethylcyclohex-2-enone $7{ }^{2}{ }^{3}$ The reaction of the diene $\mathbf{6 b}$ ($E / Z=49: 51 ; 146 \mathrm{mg}, 0.70$ $\mathrm{mmol})$ in THF ($2.3 \mathrm{~cm}^{3}$) with hydrochloric acid ($0.89 \mathrm{~cm}^{3}, 0.89$ mmol) afforded the known title compound 7 b ($106 \mathrm{mg}, 92 \%$) which was analysed by capillary GC (M ethyl Silicone, $50 \mathrm{~m}, 70-$ $\left.200^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}-1\right)$ and shown to contain a mixture of isomers $E / Z=49: 51$. (E)-7b and (Z)-7b were separated by repeated chromatography on silica gel. (E)-7b; $v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 2960$ (CH), $1665(\mathrm{C}=0), 1610(\mathrm{C}=\mathrm{C})$ and $1590(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(60 \mathrm{MHz})$ $1.32\left(6 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{Me}\right.$), 1.94-2.08(6 H, m), $2.35\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right)$, $5.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H})$ and $6.18(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 8, \mathrm{C}=\mathrm{CH}$ M e); m/z 164 ($\left.\mathrm{M}^{+}, 79 \%\right), 149$ (46), 122 (71), 121 (100), 105 (31), 93 (34), 91 (33), $80(45), 79(43), 77$ (38) and $39(40)$. (Z)-7b; $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ $2960(\mathrm{CH}), 1660(\mathrm{C}=0), 1630(\mathrm{C}=\mathrm{C})$ and $1580(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(60$ M Hz) 1.18 ($6 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{M} \mathrm{e}$), 1.92 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{C}=\mathrm{CH}$ M e), 2.23 ($2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}$), 2.26 (3 H, d, J 2, 3-M e), $5.85(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 8$, 2, $\mathrm{C}=\mathrm{CH} \mathrm{M} \mathrm{e}$) and $5.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H})$; m/z 164 ($\mathrm{M}^{+}, 73 \%$), 149 (56), 122 (48), 121 (100), 105 (29), 93 (26), 91 (32), 80 (38), 79 (41), 77 (33) and 39 (38).

4-I sopropylidene-3,5,5-trimethylcyclohex-2-enone (isoxylitone) $\mathbf{7 c}{ }^{28}$ The reaction of $\mathbf{6 c}(87 \mathrm{mg}, 0.39 \mathrm{mmol})$ in THF (2.5 cm^{3}) with hydrochloric acid ($0.97 \mathrm{~cm}^{3}, 0.97 \mathrm{mmol}$) afforded the known title product 7c ($59 \mathrm{mg}, 85 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2950$ (CH), $1660(\mathrm{C}=0), 1620(\mathrm{C}=\mathrm{C})$ and $1595(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(60 \mathrm{MHz})$ $1.31(6 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{M} \mathrm{e}$), $1.84(3 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CM} \mathrm{eM} \mathrm{e}), 2.00(3 \mathrm{H}, \mathrm{s}$, $\mathrm{C}=\mathrm{CM} \mathrm{eM} \mathrm{e}), 2.17(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,3-\mathrm{Me})$, $2.29\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right)$ and 5.90 ($1 \mathrm{H}, \mathrm{br}$ s, 2-H).
(E)- and (Z)-4-B utylidene-3,5,5-trimethylcyclohex-2-enone $7 \mathrm{~d} .{ }^{3}$ The reaction of $6 \mathrm{~d}(\mathrm{E} / \mathrm{Z}=40: 60,154 \mathrm{mg}, 0.65 \mathrm{mmol})$ in THF ($2.5 \mathrm{~cm}^{3}$) with hydrochloric acid ($0.97 \mathrm{~cm}^{3}, 0.97 \mathrm{mmol}$) afforded the known title compound 7 d ($101 \mathrm{mg}, 81 \%$) which was analysed by capillary GC (M ethyl Silicone, $50 \mathrm{~m}, 70-200^{\circ} \mathrm{C}$, $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$, and shown to bea mixture of isomers, $\mathrm{E} / \mathrm{Z}=40: 60$. (E)-7d and (Z)-7d were separated by repeated chromatography on silica gel. (E)-7d; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2950(\mathrm{CH}), 1665(\mathrm{C}=0)$, $1610(\mathrm{C}=\mathrm{C})$ and $1590(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.8-1.70(5 \mathrm{H}, \mathrm{m})$, $1.30(6 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{Me}$), 1.94-2.08(6 H, m), 2.08(3 H, d, J 1, $3-\mathrm{Me}), 2.33\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 2.20-2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right)$, $5.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H})$ and 5.98 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{C}=\mathrm{CH}$); m/z 192 ($\left.\mathrm{M}^{+}, 96 \%\right), 150$ (64), 149 (87), 135 (89), 121 (94), 108 (100), 107 (77), 93 (65), 91 (59), 79 (50), 77 (51) and 41 (56). (Z)-7d; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2960(\mathrm{C}-\mathrm{H}), 1660(\mathrm{C}=0), 1630(\mathrm{C}=\mathrm{C})$ and $1580(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz})$ 0.8-1.72 ($5 \mathrm{H}, \mathrm{m}$), $1.18(6 \mathrm{H}, \mathrm{s}$, $2 \times 5-\mathrm{Me}$), 2.21 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,3-\mathrm{Me}$), $2.28\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 2.10-$ $2.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right)$, $5.68(1 \mathrm{H}, \mathrm{dt}$, J 8, 2, C=CH) and 5.91 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{H}$); m/z 192 (M ${ }^{+}, 95 \%$), 150 (63), 149 (88), 135 (91), 121 (96), 108 (100), 107 (79), 93 (67), 91 (57), 79 (52), 77 (51) and 41 (54).

8-(But-3-enyl)-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-6-en-8ol 3 e . A ccording to the procedure described for the preparation of 3 a , the reaction of lithium metal $(1.46 \mathrm{~g}, 210 \mathrm{mmol})$ in TH F $\left(67 \mathrm{~cm}^{3}\right)$ with 4 -bromobut-1-ene ($13.6 \mathrm{~g}, 100 \mathrm{mmol}$) and the keto acetal $2(15.0 \mathrm{~g}, 57.8 \mathrm{mmol})$ in THF ($25 \mathrm{~cm}^{3}$) and subsequent chromatography of the oily residue on silica gel with ethyl acetate-hexane ($1: 4$) provided the title compound 3 e ($11.7 \mathrm{~g}, 80 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3510(\mathrm{OH}), 2960$ (CH), 1665 ($\mathrm{C}=\mathrm{C}$) , 1639 ($\mathrm{C}=\mathrm{C}$), $1090(\mathrm{C}-0), 990(\mathrm{C}=\mathrm{C}), 910(\mathrm{C}=\mathrm{C})$ and $830(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.00(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}), 1.07(3 \mathrm{H}, \mathrm{s}, 9-$ Me), 1.51 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), $1.80(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,7-\mathrm{Me}$), 1.51-2.25 (6 $\mathrm{H}, \mathrm{m}), 3.93\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.85-5.20(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.39(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$ and $5.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$; $\mathrm{m} / \mathrm{z} 252\left(\mathrm{M}^{+}, 0.7 \%\right), 197$ (100), 155 (56), 125 (19), 111 (29), 87 (28) and 43 (27) (Found: $\mathrm{M}^{+}-\mathrm{Me}, 237.1478 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3}$ requires $M-\mathrm{Me}, 237.1488$).
6-B romo-8-but-3-enyl-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec7 -ene 5 e . A ccording to the procedure described for the preparation of 5, the reaction of $3 \mathrm{e}(569 \mathrm{mg}, 2.21 \mathrm{mmol})$ with PBr_{3} ($712 \mathrm{mg}, 2.63 \mathrm{mmol}$) afforded the title compound $5 \mathbf{e}$ (554 mg , 80% from 3e); $v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 2950$ (CH), 1633 (C=C), 1095 ($\mathrm{C}-0$) , $980(\mathrm{C}=\mathrm{C})$ and $910(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.08(3 \mathrm{H}$, $\mathrm{s}, 9-\mathrm{Me}$), 1.17 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 1.53 [1 H , dd (of AB q), J 14, $3,10-\mathrm{H}], 1.81(3 \mathrm{H}, \mathrm{s}, 7-\mathrm{H}), 2.05-2.23(4 \mathrm{H}, \mathrm{m}), 2.41[1 \mathrm{H}$, d (of AB q), J $14,10-\mathrm{H}$], $3.97\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 4.25$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2,6-\mathrm{H}), 4.82-5.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 5.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$). Compound 5 e was subjected to the next reaction without purification, because of its instability to heat.

(E)- and (Z)-8-[(E)- and (Z)-But-2-enylidene 7 -7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-6-ene 6e/1-4, (E)- and (Z)-8-(but-3-enyl-idene)-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-6-ene 6e/5-6 and 8-[(E) and (Z)-buta-1,3-dienyI]7,9,9-trimethyl-1,4-dioxaspiro-[4.5]dec-6-ene 6e/7-8

A ccording to the procedure described for the preparation of $6 \mathrm{a}-\mathrm{d}$, the reaction of $\mathbf{5 e}(541 \mathrm{mg})$ with DBU ($337 \mathrm{mg}, 2.21$ mmol) afforded a mixture of the trienes $6 \mathrm{e}(303 \mathrm{mg}, 60 \%$ from 3e) which was analysed by capillary GC (M ethyl Silicone, 50 m , $70-200^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}^{-1}$), and shown to contain the conjugated trienes $6 e / 1-4$, deconjugated trienes $6 e / 5-6$ and deconjugated trienes 6e/7-8 in a ratio of 21:26:53.
The conjugated trienes $\mathbf{6 e} / \mathbf{1}-\mathbf{4}$ were further analysed by capillary GC, and shown to be a mixture of geometrical isomers $6 \mathrm{e} /$ Isomer-1, 6e/Isomer-2, 6e/Isomer-3, and $6 \mathrm{e} / \mathrm{Isomer}-4$ in a ratio of $8: 33: 13: 46$. $6 \mathrm{e} /$ Isomer- $1 ; v_{\text {max }}$ (vapour phase)/ $\mathrm{cm}^{-1} 2965$ (CH), 1649 ($\mathrm{C}=\mathrm{C}$) and 1098 ($\mathrm{C}-\mathrm{O}$); $\mathrm{m} / \mathrm{z} 234\left(\mathrm{M}^{+}, 83 \%\right), 219$ (35), 162 (71), 147 (100), 133 (52), 119 (52), 105 (56), 91 (78), 77 (46) and 41 (53) (Found: $\mathrm{M}^{+}, 234.1606 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires M ,
234.1618). 6e/lsomer-2; $v_{\text {max }}\left(\right.$ vapour phase) $/ \mathrm{cm}^{-1} 2965$ (CH), 1647 ($\mathrm{C}=\mathrm{C}$), 1620 ($\mathrm{C}=\mathrm{C}$) and 1096 ($\mathrm{C}-0$); m/z 234 ($\mathrm{M}^{+}, 83 \%$), 219 (41), 162 (89), 147 (100), 133 (45), 119 (55), 105 (68), 91 (93), 77 (64) and 41 (80) (Found: M^{+}, 234.1617. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{M}, 234.1618$). 6e/Isomer-3; $v_{\text {max }}$ (vapour phase)/ $/ \mathrm{cm}^{-1}$ 2966 (CH), 1628 (C=C) and 1099 (C-0); m/z 234 (${ }^{+}$, 88\%), 219 (37), 162 (72), 147 (100), 133 (50), 119 (54), 105 (54), 91 (83), 77 (59) and 41 (58) (Found: M^{+}, 234.1663. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{M}, 234.1618$). 6e/Isomer-4; $v_{\text {max }}$ (vapour phase)/ cm^{-1} 2966 (CH), 1630 ($\mathrm{C}=\mathrm{C}$) and 1099 ($\mathrm{C}-0$) ; m/z $234\left(\mathrm{M}^{+}, 62 \%\right.$), 219 (25), 162 (50), 147 (100), $133(33), 119$ (32), 105 (40), 91 (90), 77 (35) and 41 (43) (Found: M^{+}, 234.1655. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $M, 234.1618)$.

The mixture of unconjugated trienes $6 \mathrm{e} / 5-6$ was further analysed by capillary GC, and shown to contain the geometrical isomers 6e/lsomer-5 and 6e/Isomer-6 in a ratio of 81:19. 6e/lsomer-5; $v_{\text {max }}$ (vapour phase)/cm ${ }^{-1} 2967$ (CH), 1860 ($\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}$), $1640(\mathrm{C}=\mathrm{C}), 1096(\mathrm{C}-\mathrm{O}), 976\left(\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right)$ and 920 ($\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}$); m/z 234 (${ }^{+}$, 42\%), 219 (66), 193 (38), 178 (30), 163 (33), 149 (38), 133 (52), 119 (58), 105 (73), 93 (53), 91 (100), 77 (48), 65 (14), 53 (27) and 41 (37) (Found: $\mathrm{M}^{+}, 234.1651$. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{M}, 234.1618$). 6e/Isomer-6; $v_{\max }$ (vapour phase)/ $\mathrm{cm}^{-1} 3088$ (CH), 2964 (CH), 1860 ($\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}$), 1630 ($\mathrm{C}=\mathrm{C}$), $1100(\mathrm{C}-\mathrm{O})$, $976\left(\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right)$ and $920\left(\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}$ 234 (M+,46\%), 219 (66), 193 (45), 178 (39), 163 (34), 149 (23), 133 (39), 119 (52), 105 (65), 93 (53), 91 (100), 77 (59), 65 (10), 53 (30) and 41 (44) (Found: M^{+}, 234.1642. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires M , 234.1618).

The mixture of conjugated trienes 6e/7-8 was further analysed by capillary GC, and shown to contain a mixture of geometrical isomers $6 \mathrm{e} / /$ somer- 7 and $6 \mathrm{e} / \mathrm{Isomer}-8$ in a ratio of 63:35. 6e/lsomer-7; $v_{\text {max }}$ (vapour phase)/cm ${ }^{-1} 3094$ (CH), 2929 (CH), 1804 ($\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}$), 1636 ($\mathrm{C}=\mathrm{C}$), 1598 ($\mathrm{C}=\mathrm{C}$), 1099 ($\mathrm{C}-\mathrm{O}$), $1000\left(\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right)$ and $920\left(\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z} 234$ ($\mathrm{M}^{+}, 5 \%$), 148 (26), 133 (100), 120 (20), 105 (25) and 91 (24) (Found: $\mathrm{M}^{+}, 234.1603 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{M}, 234.1618$). $6 \mathrm{e} /$ Isomer-8; $v_{\text {max }}$ (vapour phase)/cm ${ }^{-1} 3094$ (CH), 2964 (CH), 1808 ($\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}$), 1677 ($\mathrm{C}=\mathrm{C}$), 1648 ($\mathrm{C}=\mathrm{C}$), 1602 ($\mathrm{C}=\mathrm{C}$), 1093 ($\mathrm{C}-\mathrm{O}$), $1002\left(\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right)$ and $903\left(\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z} 234$ $\left(M^{+}, 10 \%\right), 178$ (100), 163 (80), 148 (33), 133 (53), 105 (24), 91 (74), 77 (19) and 41 (24) (Found: M^{+}, 234.1603. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $M, 234.1618)$.

M egastigmatrienones; ${ }^{4}(Z)$-4-[(E)-but-2-enylidene]-3,5,5-tri-methylcyclohex-2-enone 7e/1, (Z)-4-[(Z)-but-2-enylidene]-3,5,5-trimethylcyclohex-2-enone 7e/2, (E)-4-[(Z)-but-2-enylidene] 3,5,5-trimethylcyclohex-2-enone 7e/3, (E)-4-[(E)-but-2-enylidene] 3,5,5-trimethylcyclohex-2-enone 7e/4, 4-[(E)-buta-1,3-dienyl]-3,5,5-trimethylcyclohex-2-enone $7 e / 7$, and (E)- and (Z)-4-(but-3-enylidene)-3,5,5-trimethylcyclohex -2-enone 7e/5-6
According to the procedure described for the preparation of compounds $7 \mathrm{a}-\mathrm{d}$, the reaction of the trienes 6 e ($143 \mathrm{mg}, 0.61$ mmol) with hydrochloric acid ($0.97 \mathrm{~cm}^{3}, 0.97 \mathrm{mmol}$) afforded, in THF ($2.5 \mathrm{~cm}^{3}$), a mixture of the trienones $7 \mathrm{e}(95 \mathrm{mg}, 82 \%)$ which was analysed by capillary GC (M ethyl Silicone, $50 \mathrm{~m}, 70$ $200^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$), and shown to contain the trienones $7 \mathrm{e} / 1-4$ (megastigmatrienone), 7e/5-6 and 7e/7 (megastigmatrienone) in a ratio of 51:25:24.
The mixture of conjugated trienes 7e/5-6 was further analysed by capillary GC, and shown to contain the geometrical isomers 7e/lsomer-5 and 7e/Isomer-6 in a ratio of 81:19. 7e/ Isomer-5; $v_{\max }$ (vapour phase)/cm ${ }^{-1} 2972$ (CH), 1691 (C=O), $1638(\mathrm{C}=\mathrm{C}), 1591(\mathrm{C}=\mathrm{C}), 991\left(\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right)$ and $918\left(\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right)$; $\mathrm{m} / \mathrm{z} 190\left(\mathrm{M}^{+}, 15 \%\right), 136$ (97), 134 (75), 108 (80), 105 (45), 93 (97), 91 (100), 77 (55) and 39 (62) (Found: M^{+}, 190.1314. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}$ requires $\mathrm{M}, 190.1356$). 7e/lsomer-6; $v_{\max }$ (vapour phase)/ $\mathrm{cm}^{-1} 2969$ (CH), 1694 ($\mathrm{C}=0$), 1640 ($\mathrm{C}=\mathrm{C}$), 1603 ($\mathrm{C}=\mathrm{C}$), $993\left(\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right)$ and $918\left(\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z} 190\left(\mathrm{M}^{+}, 14 \%\right), 136$ (92), 134 (84), 108 (66), 105 (45), 93 (95), 91 (100), 77 (56) and 39 (58) (Found: $\mathrm{M}^{+}, 190.1340 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}$ requires $\mathrm{M}, 190.1356$).

Preparation of the megastigmatrienones $7 \mathrm{e} / 1-4$ and $7 \mathrm{e} / 7$ by isomerisation with base

A solution of the trienones 7e/1-4, 7e/5-6 and 7e/7 (51:25:24) ($101 \mathrm{mg}, 0.53 \mathrm{mmol}$) and DBU ($18 \mathrm{mg}, 0.12 \mathrm{mmol}$) in xylene $\left(2.5 \mathrm{~cm}^{3}\right)$ was refluxed for 4 h under nitrogen. The reaction mixture was washed successively with aqueous hydrochloric acid and brine, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated. The oily residue was chromatographed on silica gel with ethyl acetate-hexane ($1: 4$) as eluent to afford the trienones $7 \mathrm{e}(87 \mathrm{mg}, 86 \%$) which were analysed by capillary GC (M ethyl Silicone, $50 \mathrm{~m}, 70-$ $200^{\circ} \mathrm{C}, 5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$), and shown to be a mixture of the megastigmatrienones $\mathbf{7 e} / \mathbf{1}, \mathbf{7 e} / \mathbf{2}, \mathbf{7 e} / \mathbf{3}, \mathbf{7 e} / \mathbf{4}$ and $\mathbf{7 e} / \mathbf{7}$ in a ratio of $10: 40: 9: 34: 7$. The five isomers were separated by repeated column chromatography on silica gel. 7e/1; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 2971 (CH), $1690(\mathrm{C}=0)$ and $1604(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.12$ (6 $\mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{Me}$), 1.73 ($3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.8,1.5, \mathrm{C}=\mathrm{C}-\mathrm{M} \mathrm{e}$), $2.20(3 \mathrm{H}$, d, J $1.2,3-\mathrm{Me}$), $2.22\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 5.83(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $\mathrm{C}=\mathrm{CH} \mathrm{M} \mathrm{e}), 6.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.3, \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{C})$ and $6.46(1 \mathrm{H}$, ddd, J 15.2, 11.3, 1.5, CH =C-M e); m/z 190 (M ${ }^{+}$, 63\%), 175 (50), 148 (62), 147 (75), 133 (68), 119 (58), 105 (58), 91 (100), 77 (71), 65 (30), 55 (26), 41 (79) and 39 (70). 7e/2; $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 2971$ (CH), $1690(\mathrm{C}=0)$ and $1603(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 1.15(6 \mathrm{H}, \mathrm{s}$, $2 \times 5-\mathrm{Me}$), 1.76 ($3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.2,1.6, \mathrm{C}=\mathrm{C}-\mathrm{Me}$), $2.18(3 \mathrm{H}, \mathrm{s}$, $3-\mathrm{Me}), 2.24\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 5.67(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 10.7,7.2$, $\mathrm{C}=\mathrm{CH}-\mathrm{M} \mathrm{e}$), $5.85(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), $6.35(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 11.3,10.7,1.7$, $\mathrm{CH}=\mathrm{C}-\mathrm{M} \mathrm{e}$) and 6.46 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.3, \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{C}$); m/z 190 ($\mathrm{M}^{+}, 80 \%$), 175 (51), 148 (63), 147 (72), 133 (78), 119 (63), 105 (68), 91 (100), 77 (62), 65 (46), 55 (47), 41 (63) and 39 (73). 7e/3; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2971(\mathrm{CH}), 1693(\mathrm{C}=0)$ and $1594(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}) 1.21(6 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{Me}), 1.73(3 \mathrm{H}$, dd, J 7.3, 1.6, $\mathrm{C}=\mathrm{C}-\mathrm{M} \mathrm{e}), 2.00(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}), 2.23\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 5.73(1 \mathrm{H}, \mathrm{dq}$, J 10.7, 7.3, C=CH -M e), 5.79 ($1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}$), 6.55 (1 H , ddd, J 12.4, 10.7, 1.6, CH=C-Me) and 6.68 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.4, \mathrm{C}=\mathrm{CH}-$ $\mathrm{CH}=\mathrm{C}) ; \mathrm{m} / \mathrm{z} 190\left(\mathrm{M}^{+}, 83 \%\right), 175$ (51), 148 (46), 147 (51), 133 (83), 119 (71), 105 (88), 91 (100), 77 (91), 65 (55), 55 (34), 41 (76) and 39 (85). 7e/4; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2969(\mathrm{C}-\mathrm{H}), 1692(\mathrm{C}=\mathrm{O})$ and 1593 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(300 \mathrm{M} \mathrm{Hz}) 1.23(6 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{M} \mathrm{e}$), 1.77 (3 H , dd, J 6.9, $1.5, \mathrm{C}=\mathrm{C}-\mathrm{Me}$), $1.96\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}\right.$ e, $2.23\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right)$, $5.78(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.85(1 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}-\mathrm{Me}), 6.36(1 \mathrm{H}, \mathrm{d}$, J $11.6, \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{C}$) and 6.64 (1 H , ddd, J 14.6, 11.6, 1.5 , $\mathrm{CH}=\mathrm{C}-\mathrm{M} \mathrm{e}$); m/z 190 (${ }^{+}$, 63\%), 175 (54), 148 (55), 147 (71), 133 (63), 119 (51), 105 (55), 91 (100), 77 (51), 65 (33), 55 (33), 41 (76) and 39 (54). 7e/7; $v_{\text {max }}\left(\right.$ vapour phase) $/ \mathrm{cm}^{-1} 2969$ (CH), 1817 ($\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}$), $1695(\mathrm{C}=\mathrm{O}), 1635(\mathrm{C}=\mathrm{C}), 1000\left(\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right), 960$ $[(\mathrm{E}, \mathrm{C}=\mathrm{C})]$ and $908\left(\mathrm{C}-\mathrm{C}=\mathrm{CH}_{2}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}) 0.86(3 \mathrm{H}, \mathrm{s}$, $5-\mathrm{Me}$), 0.93 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 1.80 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me}$), $1.97[1 \mathrm{H}, \mathrm{d}$ (of AB q), J $16.7,6-\mathrm{H}$], 2.25 [1 H, d (of AB q), J 16.7, 6-H], 2.46 (1 H, d, J 9.4, 4-H), 4.97 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.9, \mathrm{C}=\mathrm{CH} H$) $5.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 16.9, $\mathrm{C}=\mathrm{CH} H$), 5.47 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.9,9.5, \mathrm{CH}-\mathrm{CH}=\mathrm{C}$), 5.79 (1 $\mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}\right)$ and $6.21(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}-\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z} 190(\mathrm{M}+8 \%), 134$ (94), 119 (40), 105 (26), 91 (100), 77 (21) and 39 (28).

6-B romo-8-(3,3-ethylenediox ybutyl)-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-7-ene 5 f

A ccording to M ethod II of the general procedure, the reaction of 3 f ($690 \mathrm{mg}, 2.21 \mathrm{mmol}$) with PBr_{3} ($712 \mathrm{mg}, 2.63 \mathrm{mmol}$) afforded the title compound $5 f(613 \mathrm{mg}, 74 \%)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $2975(\mathrm{CH}), 1639(\mathrm{C}=\mathrm{C})$ and $1095(\mathrm{C}-0)$; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.07(3 \mathrm{H}$, s, 9-M e), 1.10 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{Me}$), 1.22 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{M} \mathrm{e}$), 1.76 ($3 \mathrm{H}, \mathrm{s}$, $7-\mathrm{M} \mathrm{e}), 1.45-2.22(5 \mathrm{H}, \mathrm{m}), 2.32[1 \mathrm{H}, \mathrm{d}(\mathrm{of} \mathrm{AB} \mathrm{q}), \mathrm{J} 14,10-\mathrm{H}]$, $3.81\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.86\left(4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and 4.28 ($\mathbf{1} \mathbf{H}, \mathrm{d}, \mathrm{J} 3,6-\mathrm{H}$). Compound $\mathbf{5 f}$ was subjected to the next reaction without purification, because of its instability to heat.

(E) and (Z)-8-(3,3-E thylenedioxybutylidene)-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-6-ene $6 f$

A ccording to the procedure described for the preparation of $\mathbf{6 a - d}$, the reaction of $\mathbf{5 f}(595 \mathrm{mg})$ with DBU ($337 \mathrm{mg}, 2.21$ mmol) afforded the diene $6 \mathbf{f}$ ($309 \mathrm{mg}, 49 \%$ from $\mathbf{3 f}$) which was
analysed by capillary GC (M ethyl Silicone, $50 \mathrm{~m}, 70-200^{\circ} \mathrm{C}$, $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$) and shown to contain a mixture of (E)-6f/(Z)$6 \mathbf{f}=38: 62$. (E$)-6 \mathrm{f}$ and (Z)-6f were separated by repeated chromatography on silica gel. (E)-6f; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 2950(\mathrm{CH})$, $1640(\mathrm{C}=\mathrm{C})$ and $1130(\mathrm{C}-0)$; $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 1.30(6 \mathrm{H}, \mathrm{s}, 2 \times 9-$ Me), $1.33(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{Me}), 1.78\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right), 1.88(3 \mathrm{H}, \mathrm{d}$, J 1, 7-M e), $2.70\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}\right.$), $3.93(8 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.51(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $5.69(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\left.\mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 295\left(\mathrm{M} \mathrm{H}^{+}, 100 \%\right), 251$ (92), 233 (8), 209 (71) and 165 (38) (Found: $\mathrm{M}^{+}-\mathrm{Me}$, 279.1538. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}$ requires $\quad \mathrm{M}-\mathrm{Me}, 279.1594)$. (Z)-6f; $\quad v_{\max }($ film $) / \mathrm{cm}^{-1} 2980$ (CH), $1640(\mathrm{C}=\mathrm{C}), 1620(\mathrm{C}=\mathrm{C})$ and $1100(\mathrm{C}-0)$; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz})$ $1.13(6 \mathrm{H}, \mathrm{s}, 2 \times 9-\mathrm{Me}), 1.31(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{M} \mathrm{e}), 1.79\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right)$, 2.03 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,7-\mathrm{Me}$), 2.59 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{C}=\mathrm{C}-\mathrm{CH}_{2}$), 3.93 $\left(8 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$ and $5.30-5.80(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}=\mathrm{CH})$; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 295\left(\mathrm{M} \mathrm{H}^{+}, 100 \%\right), 251$ (46), 233 (73), 209 (41) and 165 (14) (Found: $\mathrm{M}^{+}-\mathrm{Me}, 279.1626 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4}$ requires $\mathrm{M}-\mathrm{Me}$, 279.1594).

(E)-4-(4-0 xo-2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one (3-oxo- α-ionone) 8^{20}

A ccording to the procedure described for the preparation of $7 \mathrm{a}-\mathrm{d}$, the reaction of $6 \mathrm{f}(353 \mathrm{mg}, 1.2 \mathrm{mmol} ; \mathrm{E}: Z=40: 60)$ with hydrochloric acid ($1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution; $1.17 \mathrm{~cm}^{3}, 1.17 \mathrm{mmol}$) in THF ($3.0 \mathrm{~cm}^{3}$) afforded the title natural product 8 (161 mg , 65%); $v_{\max }$ (film)/cm ${ }^{-1} 2960$ (CH), 1670 ($\mathrm{C}=0$) , 1379, 1265 and 995; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.02(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{M} \mathrm{e}), 1.08$ ($3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}$), 1.90 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,2-\mathrm{Me}$), 2.05-2.25 ($2 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}_{2}$), $2.27(3 \mathrm{H}, \mathrm{s}$, COM e), $2.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9,1-\mathrm{H}), 5.93(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 6.13(1 \mathrm{H}$, d, J $16, \mathrm{C}=\mathrm{CHCO}$) and 6.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16,9, \mathrm{C}-\mathrm{CH}=\mathrm{CH}$); $\mathrm{m} / \mathrm{z} 206\left(\mathrm{M}^{+}, 1 \%\right), 150(17), 108$ (100), 91 (12), 77 (18), 55 (8) and 43 (97). The spectra (IR, ${ }^{1} H$ NM R, mass) of 8 were identical with those of an authentic sample ${ }^{20}$

(E)- and (Z)-4-(3-H ydroxybutylidene)-3,5,5-trimethylcyclo-hex-2-enone $9{ }^{10}$

A mixture of $6 \mathrm{f}(2.41 \mathrm{~g}, 8.2 \mathrm{mmol} ; \mathrm{E}: Z=40: 60$) and 37% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ impregnated silica gel $(9.7 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(16 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 2.5 h and then filtered through a pad of Celite 545. The filtrate was washed successively with aqueous NaHCO_{3} and brine, dried ($\mathrm{M} \mathrm{SSO}_{4}$) and evaporated to afford (E)- and (Z)-4-(3-oxobutylidene)-3,5,5-trimethylcyclo-hex-2-enone $7 \mathrm{f}(1.69 \mathrm{~g}, 70 \%)$, which was analysed by GC (Silicone OV - $17,0.8 \mathrm{~m}, 185^{\circ} \mathrm{C}$), and shown to contain a mixture of E / Z isomers in a ratio of $40: 60$. (E)-7f; $v_{\text {max }}$ (vapour phase)/ $\mathrm{cm}^{-1} 2971$ (CH), 1736 ($\mathrm{C}=0$), 1694 ($\mathrm{C}=0$) and 1618 ($\mathrm{C}=\mathrm{C}$); m/z 206 (M ${ }^{+}, 8 \%$), 164 (37), 149 (63), 121 (13), 105 (9), 91 (10), 77 (12) and 43 (100). (Z)-7f; $v_{\text {max }}$ (vapour phase)/ $\mathrm{cm}^{-1} 2972$ (CH), 1734 ($\mathrm{C}=0$), 1692 ($\mathrm{C}=0$) and $1620(\mathrm{C}=\mathrm{C})$; m/z 206 ($\mathrm{M}^{+}, 9 \%$), 164 (42), 149 (78), 121 (8), 105 (10), 91 (12), 77 (13) and 43 (100). (E)/(Z) = 40:60; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.29-1.21(6 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e})$, 1.12-1.31 (3 H , d, J 1, 3-M e), 2.21-2.25 (3 H , s, COM e), 1.36 (2 $\mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}$), 3.45-3.59 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}$), $5.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, 2-H) and 5.85-6.46 ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}$). To a stirred solution of $7 \mathrm{f}(1.26 \mathrm{~g}, 6.1 \mathrm{mmol} ; E: Z=40: 60)$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}$ in diethylene glycol dimethyl ether ${ }^{29}\left(2.04 \mathrm{mmol} \mathrm{dm}{ }^{-3} ; 7.9 \mathrm{~cm}^{3}, 3.87 \mathrm{mmol}\right)$ at $5^{\circ} \mathrm{C}$, and stirring was continued for 3 h . The reaction mixture was quenched by addition of ice-water and then extracted with ethyl acetate. Removal of the solvent from the mixture left an oil which was chromatographed on silica gel with ethyl acetatehexane ($1: 1$) as eluent to afford the natural product 9 (875 mg , 69%), which was analysed by GC (Silicone OV-17, 0.8 m , $185^{\circ} \mathrm{C}$), and shown to be an isomeric mixture ($\mathrm{E} / \mathrm{Z}=40: 60$). The isomers (E)-9 and (Z)-9 were isolated by preparative GC (FFAP, $2 \mathrm{~m}, 200^{\circ} \mathrm{C}$). (E)-9; $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3480(\mathrm{OH}), 1650$ ($\mathrm{C}=0$), $1610(\mathrm{C}=\mathrm{C})$ and $1590(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.25[3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6, $\mathrm{C}(\mathrm{OH}) \mathrm{M} \mathrm{e}$], $1.28(6 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{Me}), 2.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,3-\mathrm{Me}$), $2.34\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 2.50-2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right), 3.90(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHOH}), 5.90(1 \mathrm{H}, \mathrm{br} s, 2-\mathrm{H})$ and $6.11(1 \mathrm{H}, \mathrm{t}, \mathrm{J}, \mathrm{C}=\mathrm{CH}-$
$\left.\mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z} 208\left(\mathrm{M}^{+}, 3 \%\right), 164(50), 149(100), 136(5), 121(21)$, 105 (13), 91 (15), 77 (14) and 45 (93). (Z)-9; $v_{\max }$ (film)/ $/ \mathrm{cm}^{-1}$ $3430(\mathrm{OH}), 1660(\mathrm{C}=0)$ and $1580(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.18(6 \mathrm{H}$, $\mathrm{s}, 2 \times 5-\mathrm{Me}$), $1.35[3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{C}(\mathrm{OH}) \mathrm{M} \mathrm{e}], 2.21(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1$, $3-\mathrm{Me}$ e), $2.29\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 2.50-2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right), 3.90$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} O H$), $5.66\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 6,1, \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}\right)$ and $5.90(1$ H, br s, 2-H); m/z 208 (M ${ }^{+}$, 1\%), 164 (54), 149 (100), 136 (5), 121 (19), 105 (13), 91 (15), 77 (15) and 45 (80).

($2 \mathrm{R}^{*}, 8 \mathrm{aR}{ }^{*}$)- and ($2 \mathrm{R}^{*}, 8 \mathrm{aS}{ }^{*}$)-2,3,5,6,8,8a-H exahydro-2,5,5,8a-tetramethyl-7H-1-benzopyran-7-one 10a, b^{21}

To sodium hydride (50%; $630 \mathrm{mg}, 13.0 \mathrm{mmol}$), washed three times with benzene, was added dropwise at $0^{\circ} \mathrm{C}$ a solution of 9 ($E: Z=40: 60 ; 905 \mathrm{mg}, 4.35 \mathrm{mmol}$) in benzene ($9.0 \mathrm{~cm}^{3}$). The resulting slurry was stirred at room temperature under nitrogen for 40 h after which it was poured into ice-water and extracted with ethyl acetate. Concentration of the extract left an oily residue which was chromatographed on silica gel with ethyl acetate-hexane ($1: 2$) to afford the title natural product 10a,b [$434 \mathrm{mg}, 48 \%$; mp $47-48^{\circ} \mathrm{C}$ (lit., ${ }^{11} 42-45^{\circ} \mathrm{C}$)]. The compound $10 \mathrm{a}, \mathrm{b}$ was analysed by capillary GC (F FAP, $50 \mathrm{~m}, 70-200^{\circ} \mathrm{C}$, $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$), and shown to be mixture of two diastereoisomers in a ratio of 9:91. 10a; $v_{\text {max }}\left(\right.$ vapour phase) $/ \mathrm{cm}^{-1} 2995$ (CH), 1720 ($\mathrm{C}=0$) and 1115 ($\mathrm{C}-0$); m/z 208 ($\mathrm{M}^{+}, 30 \%$), 194 (11), 193 (100), 151 (45), 124 (43), 109 (67), 107 (61), 91 (27), 43 (99) and 41 (39). 10b; $v_{\max }\left(\right.$ vapour phase)/cm ${ }^{-1} 2997$ (CH), 1718 (C=0) and $1120(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(60 \mathrm{M} \mathrm{Hz}) 1.12(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.21(3 \mathrm{H}, \mathrm{s}$, 5-M e), 1.24 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6,2-\mathrm{M} \mathrm{e}$), 1.48 ($3 \mathrm{H}, \mathrm{s}, 8 \mathrm{a}-\mathrm{M} \mathrm{e}$), 1.90-2.20 $\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 2.35\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 2.58\left(2 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}_{2}\right), 3.95(1 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H})$ and $5.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4,4,4-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 208\left(\mathrm{M}^{+}, 0.1 \%\right), 194$ (2), 193 (100), 151 (15), 124 (34), 109 (70), 107 (33), 91 (19), 43 (53) and 41 (26).

4-H ydroxy-3,4,5,5-tetramethylcyclohex-2-enone 11a

To a stirred solution of $3 \mathrm{a}(3.00 \mathrm{~g}, 14.2 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ was added aqueous $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution; $5.0 \mathrm{~cm}^{3}, 5.0$ mmol), and stirring was continued for 5 min at room temperature. The product was extracted with ethyl acetate. The extract was washed successively with aqueous NaHCO_{3} and brine, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and evaporated. The crystalline residue was recrystallised from ethyl acetate-hexane ($1: 10$) to afford the title compound 11a ($1.90 \mathrm{~g}, 80 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3400$ $(\mathrm{OH}), 2980(\mathrm{CH}), 1665(\mathrm{C}=0)$ and $1145(\mathrm{C}-\mathrm{O})$; $\delta_{\mathrm{H}}(60 \mathrm{MHz})$ 1.07 ($6 \mathrm{H}, \mathrm{s}, 2 \times 5-\mathrm{Me}$), 1.38 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), $1.80(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), $2.00(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,3-\mathrm{Me}), 2.35\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right)$ and $5.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $2-\mathrm{H}$); m/z 168 ($\left.\mathrm{M}^{+}, 0.8 \%\right), 125$ (14), 112 (94), 84 (28), 69 (100) and 43 (45).

O ne-pot synthesis of 4-methylene-3,5,5-trimethylcyclohex-2enone 7a

To a solution of 11a ($371 \mathrm{mg}, 2.21 \mathrm{mmol}$) and D BU $(1.00 \mathrm{~g}, 6.63$ mmol) in chloroform ($5 \mathrm{~cm}^{3}$) was added dropwise a solution of $\mathrm{PBr}_{3}(500 \mathrm{mg}, 1.85 \mathrm{mmol})$ in chloroform ($1.7 \mathrm{~cm}^{3}$) under nitrogen at $-5^{\circ} \mathrm{C}$. A fter the reaction mixture had been stirred for 2 h at room temperature, it was quenched with aqueous HCl and extracted with diethyl ether. Theextract was washed successively with brine and aqueous NaHCO_{3}, dried $\left(\mathrm{M}_{\mathrm{gSO}}^{4}\right.$) and evaporated. The oily residue was chromatographed on silica gel with ethyl acetate-hexane (1:2) as eluent to afford the title compound $7 \mathrm{7a}$ ($196 \mathrm{mg}, 59 \%$), whose IR and ${ }^{1} \mathrm{H}$ N M R spectra were identical with those mentioned above.

4a-H ydroxy-2,3,4,4a,5,6-hexa-4,5,6-hydro-4,4,7-trimethylnaph-thalen-2-one 13

To a solution of $\mathrm{NaOH}(3.53 \mathrm{~g}, 88.3 \mathrm{mmol})$ in methanol (75 cm^{3}) was added the dione $12(10.4 \mathrm{~g}, 48.6 \mathrm{mmol})$, prepared from the diacetal $3 f$ according to the published procedure, ${ }^{16}$ in methanol ($39 \mathrm{~cm}^{3}$) and the reaction mixture was stirred at room temperature for 7 h . It was then neutralised with aqueous HCl and concentrated. The product was extracted with ethyl acetate
and the extract was concentrated. The crystalline residue was recrystallised from ethyl acetate-hexane ($1: 10$) to afford the title compound $\mathbf{1 3}$ ($7.01 \mathrm{~g}, 70 \%$); mp $95-96^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 75.6$; $\mathrm{H}, 8.9 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.7 ; \mathrm{H}, 8.8 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $3400(\mathrm{OH}), 2980(\mathrm{CH}), 1660(\mathrm{C}=0)$ and $1630(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(60$ $\mathrm{M} \mathrm{Hz}) 0.98(3 \mathrm{H}, \mathrm{s}, ~ 4-\mathrm{M} \mathrm{e}), 1.10(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{M} \mathrm{e}), 1.60-2.10(2 \mathrm{H}$, $\left.\mathrm{m}, 5-\mathrm{H}_{2}\right), 1.96(3 \mathrm{H}, \mathrm{br} \mathrm{s}, 7-\mathrm{Me}$), 2.10-2.40(3H, m), 2.90[1 H, d (of AB q), J $15,3-\mathrm{H}], 5.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH})$ and $6.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{C}=\mathrm{CH}$); m/z 206 (${ }^{+}$, 15\%), 198 (20), 173 (10), 145 (20), 141 (15), 132 (100), 122 (44), 108 (54), 79 (88), 77 (36) and 43 (48).

4a-H ydroxy-3,4,5,6,7,8-hexahydro-4,4,7-trimethyInaphthalen-2one 14

To a solution of $\mathrm{KOH}(26 \mathrm{mg}, 0.5 \mathrm{mmol})$ in methanol ($71 \mathrm{~cm}^{3}$) were added the hydroxy dienone $13(3.16 \mathrm{~g}, 15.2 \mathrm{mmol})$ and 5% $\mathrm{Pd}-\mathrm{C}(190 \mathrm{mg})$. The resulting mixture was stirred under a hydrogen atmosphere at room temperature, until 1 equivalent of hydrogen had been absorbed. The catalyst was then filtered off and the filtrate was evaporated. The crystalline residue was recrystallised from ethyl acetate-hexane $(1: 10)$ to afford the title compound 14 ($2.47 \mathrm{~g}, 78 \%$), mp $114-115{ }^{\circ} \mathrm{C}$ (Found: C, 74.8; $\mathrm{H}, 9.7 . \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 9.7 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3450(\mathrm{OH}), 2980(\mathrm{CH}), 1675(\mathrm{C}=0)$ and $1625(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(60$ $\mathrm{MHz}) 1.04(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 1.08 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), $1.40(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7$, 7-M e), 1.30-3.10 ($10 \mathrm{H}, \mathrm{m}$) and $5.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH})$; m/z 208 ($\mathrm{M}^{+}, 5 \%$), 180 (7), 166 (28), 152 (100), 123 (23), 110 (49), 81 (46), 68 (18), 67 (17), 55 (23), 43 (21), 41 (48) and 39 (33).

2,3,4,6,7,8-H ex ahydro-4,4,7-trimethyInaphthalen-2-one 15^{12}

To a stirred solution of $14(1.87 \mathrm{~g}, 89.9 \mathrm{mmol})$ and D BU (4.41 g , 29.0 mmol) in chloroform ($23 \mathrm{~cm}^{3}$) was added dropwise a solution of $\mathrm{PBr}_{3}(3.20 \mathrm{mg}, 11.8 \mathrm{mmol})$ in chloroform ($15 \mathrm{~cm}^{3}$) under nitrogen at $-5^{\circ} \mathrm{C}$. A fter being stirred for an additional 4 h at room temperature the reaction mixture was quenched, by addition of aqueous HCl , and then extracted with diethyl ether. The extract was washed successively with brine and aqueous NaHCO_{3}, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated. The oily residue was chromatographed on silica gel with ethyl acetate-hexane (1:7) as eluent to afford the title natural product 15 ($1.18 \mathrm{~g}, 69 \%$); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2975(\mathrm{CH}), 1670(\mathrm{C}=0), 1635(\mathrm{C}=\mathrm{C})$ and 1595 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}(60 \mathrm{MHz}) 0.99(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6,7-\mathrm{Me}$), $1.05(3 \mathrm{H}, \mathrm{s}$, 4-M e), 1.16 ($3 \mathrm{H}, \mathrm{s}, 4-\mathrm{Me}$), 1.50-2.15 ($5 \mathrm{H}, \mathrm{m}$), $2.29(2 \mathrm{H}, \mathrm{s}$, $\left.3-\mathrm{H}_{2}\right)$, $5.58(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$ and $5.59(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$; m/z $190\left(\mathrm{M}^{+}\right.$, 92\%), 175 (47), 161 (19), 147 (83), 134 (100), 119 (63), 105 (50), 91 (63), 77 (29), 67 (16), 55 (21) and 41 (37).

(8R*)-8-[(S*)-3-A cetoxybut-1-ynyl]8-hydroxy-7,9,9-trimethyl-1,4-dioxaspiro[4.5]dec-6-ene 17

To a solution of $16^{6,21}(6.00 \mathrm{~g}, 22.6 \mathrm{mmol})$ in pyridine ($100 \mathrm{~cm}^{3}$) was added acetic anhydride ($50 \mathrm{~cm}^{3}$), and stirring was continued at room temperature for 12 h . The reaction mixture was then poured into ice-water and extracted with ethyl acetate. Evaporation of the extract left an oily residue which was chromatographed on silica gel with ethyl acetate-hexane (1:2) to afford the title compound 17 ($6.37 \mathrm{~g}, 92 \%$); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1}$ $3464(\mathrm{OH}), 2974(\mathrm{CH}), 1744(\mathrm{C}=\mathrm{O}), 1671(\mathrm{C}=\mathrm{C})$ and 1096 ($\mathrm{C}-0$) ; $\delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.08(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{M} \mathrm{e}), 1.12(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{M} \mathrm{e})$, 1.47 [3 H, d, J 7, CH (OAc)M e], 1.88 ($3 \mathrm{H}, \mathrm{s}, 7-\mathrm{Me}$), 1.92 (2 H , $\left.\mathrm{s}, 10-\mathrm{H}_{2}\right), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOM} \mathrm{e}), 2.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.93(4 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 5.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H})$ and $5.45(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, CHOAC); m/z 308 ($\left.{ }^{+}, 0.2 \%\right), 252(43), 192(25), 164$ (17), 162 (15), 92 (20) and 43 (100) (Found: M^{+}- COM e, 265.1397. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4}$ requires M - COM e, 265.1408).

(8R*)-8-[(S*,Z)-3-A cetoxybut-1-enyl]8-hydroxy-7,9,9-tri-methyl-1,4-dioxaspiro[4.5]dec-6-ene 18

A solution of $\mathbf{1 7}(6.3 \mathrm{~g}, 20.5 \mathrm{mmol})$ in ethyl acetate $\left(75 \mathrm{~cm}^{3}\right)$ was hydrogenated in the presence of Lindlar catalyst (1 g ; containing $5 \% \mathrm{Pd}-\mathrm{C}$) at $20^{\circ} \mathrm{C}$, until 1 equivalent of hydrogen had been absorbed. The oily residue was filtered off and the filtrate was
evaporated. The crude product was chromatographed on silica gel with ethyl acetate-hexane ($1: 2$) to give the title compound 18 ($4.45 \mathrm{~g}, 70 \%$); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3430$ (OH), 2980 (CH), 1710 ($\mathrm{C}=0$), $1668(\mathrm{C}=\mathrm{C})$ and $1095(\mathrm{C}-0)$; $\delta_{\mathrm{H}}(100 \mathrm{M} \mathrm{Hz}) 1.03(3 \mathrm{H}, \mathrm{s}$, 9-M e), 1.08 ($3 \mathrm{H}, \mathrm{s}, 9-\mathrm{M} \mathrm{e}$), $1.30[3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{CH}(\mathrm{OA} \mathrm{c)M} \mathrm{e]} 1.73$, ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1,7-\mathrm{Me}$), $1.80\left(2 \mathrm{H}, \mathrm{s}, 10-\mathrm{H}_{2}\right), 2.03(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOMe}$), 3.80-3.95 ($4 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.78(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.32-5.52(2$ $\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,6-\mathrm{H})$ and $6.15(1 \mathrm{H}, \mathrm{m}$, CHOAc); m/z $310\left(\mathrm{M}^{+}, 0.3 \%\right), 250(22), 240(10), 194$ (100), 179 (36), 164 (63), 149 (40), 109 (15), 87 (39) and 43 (77) (Found: $\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, ~ 250.1615 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$ requires $\mathrm{M}-\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}, 250.1568$).

(8 R *)-4-[(S*,Z)-3-A cetoxybut-1-enyl]-4-hydroxy-3,5,5-tri-methylcyclohex-2-enone 19

A solution of $18(5.00 \mathrm{~g}, 16.1 \mathrm{mmol})$ and aqueous $\mathrm{HCl}(1 \mathrm{~mol}$ dm^{-3} solution; $25 \mathrm{~cm}^{3}, 25 \mathrm{mmol}$) in THF ($25 \mathrm{~cm}^{3}$) was stirred at room temperature for 5 h , and then extracted with ethyl acetate. Concentration of the extract left a crystalline residue which was recrystallised from ethyl acetate-hexane ($1: 3$) to afford the title compound 19 ($3.60 \mathrm{~g}, 84 \%$), mp $149-150^{\circ} \mathrm{C}$ (Found: C, 67.6; H , 8.3. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 67.5 ; \mathrm{H}, 8.4 \%\right)$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3520$ (OH), 2970 (CH), 1715 ($\mathrm{C}=0$), $1670(\mathrm{C}=0$), 1662 ($\mathrm{C}=\mathrm{C}$) and $1260(\mathrm{C}-0)$; $\delta_{\mathrm{H}}(100 \mathrm{MHz}) 1.03(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), $1.08(3 \mathrm{H}, \mathrm{s}$, 5-M e), 1.35 [3H, d, J 6, CH (OAc)M e], 1.96 (3H, d, J 1, 3-M e), 2.07 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCOM}$ e), $2.30\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}_{2}\right), 5.38-5.65(2 \mathrm{H}, \mathrm{m})$, 5.83 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,2-\mathrm{H}$) and 6.15 ($1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 6,2, \mathrm{CHOAc}$); m/z 266 (${ }^{+}, 0.1 \%$), 210 (11), 205 (8), 151 (37), 150 (95), 135 (55), 124 (32), 122 (96), 79 (37) and 43 (100).

($8 \mathrm{R}^{*}$)-4-H ydroxy-4-[(S*, E)-3-hydroxybut-1-enyl]-3,5,5-tri-methylcyclohex-2-enone (Blumenol-A) $21^{19,23}$

A stirred solution of 19 ($105 \mathrm{mg}, 0.39 \mathrm{mmol}$) in methanol (3 cm^{3}) was irradiated with a mercury high-pressure lamp (100 W) at $20^{\circ} \mathrm{C}$ for 4.5 h , and was then concentrated. The residue, showing a mixture of 19 and two products in a ratio of 3:83:14 by capillary GC (FFS, $50 \mathrm{~m}, 240^{\circ} \mathrm{C}$), was chromatographed on silica gel with ethyl acetate-hexane ($1: 3-1: 1$) to afford the rearranged known product, 6-[(E)-3-acetoxybut-1-enyl]-2,6,6-trimethylcyclohexane-1,4-dione 22 ($13 \mathrm{mg}, 12 \%$) and the (E)-olefinic ketone, ($8 \mathrm{R} *)$-4-[(S*, E)-3-acetoxybut-1-enyl]-4-hydroxy-3,5,5-trimethylcyclohex-2-enone 20 ($79 \mathrm{mg}, 75 \%$), along with a small amount of 19. 22; $v_{\text {max }}($ fiilm $) / \mathrm{cm}^{-1} 2980$ (CH), $1720(\mathrm{C}=0), 1240(\mathrm{C}-\mathrm{O})$ and $980(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.14$ (3 $\mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 1.18 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{M} \mathrm{e}$), 1.24 ($3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}$), $1.26[3 \mathrm{H}$, d, J 7, CH (OH)M e], $2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOM} \mathrm{e}$), $2.43[1 \mathrm{H}, \mathrm{d}$ (of AB q), J $17, \mathrm{COCH}$], $2.60[1 \mathrm{H}, \mathrm{d}$ (of AB q), J 19, COCH], 2.81 [1 H , d (of $A B q$), J 19, COCH], $2.82[1 \mathrm{H}, \mathrm{d}$ (of $A B q$), J 17 , $\mathrm{COCH}], 5.26(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 16,7, \mathrm{CHOAc})$ and $5.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16$, 7, $\mathrm{CH}=\mathrm{CH}-\mathrm{CH}$) and $5.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16, \mathrm{CH}=\mathrm{CH}-\mathrm{CH}) .20$; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3480(\mathrm{OH}), 1740(\mathrm{C}=0), 1660(\mathrm{C}=0), 1240$ ($\mathrm{C}-\mathrm{O}$) and $975(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}(100 \mathrm{MHz}) 0.99(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}), 1.07(3$ $\mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$ e, $1.32[3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{CH}(\mathrm{OA} \mathrm{C)M}$ e], $1.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1,3-$ Me), $1.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OCOM}$ e), $2.20[1 \mathrm{H}, \mathrm{d}$ (of AB q), J $17,6-\mathrm{H}$], $2.48[1 \mathrm{H}, \mathrm{d}$ (of AB q), J 17, 6-H], 5.39 (1 $\mathrm{H}, \mathrm{qd}, \mathrm{J} 6,2, \mathrm{CH} \mathrm{OA}), 5.75-5.85(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and 5.91 (1 H, d, J 1, 2-H); m/z 266 (M $\left.{ }^{+}, 0.2 \%\right), 206$ (15), 151 (33), 150 (85), 135 (32), 124 (74), 122 (67), 79 (34) and 43 (100). To a solution of $20(500 \mathrm{mg}, 1.88 \mathrm{mmol})$ in methanol ($20 \mathrm{~cm}^{3}$) and chloroform ($40 \mathrm{~cm}^{3}$) was added NaOM e ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ methanol solution; $6 \mathrm{~cm}^{3}, 6 \mathrm{mmol}$), and stirring was continued at room temperature for 6 h . The oily residue obtained upon evaporation was extracted with ethyl acetate. Evaporation of the extract left a residue which was chromatographed on silica gel with ethyl acetate-hexane (2:1) to afford the title natural product 21 (358 $\mathrm{mg}, 85 \%), \mathrm{mp} 125-126{ }^{\circ} \mathrm{C}$ (lit., ${ }^{18} 116-118{ }^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $3380(\mathrm{OH}), 1670(\mathrm{C}=\mathrm{O}), 1618$ ($\mathrm{C}=\mathrm{C}$), 1128 ($\mathrm{C}-\mathrm{O}$) and 975 $(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.02(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{M} \mathrm{e}), 1.08(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$,
$1.30[3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CH}(\mathrm{OH}) \mathrm{M} \mathrm{e}], 1.90(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{M} \mathrm{e}), 2.08(1 \mathrm{H}$, br s, OH), $2.15(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.23[1 \mathrm{H}, \mathrm{d}$ (of AB q), J 17.1, $6-\mathrm{H}$], 2.45 [1 H, d (of AB q), J $17.1,6-\mathrm{H}$], 4.41 [1 H, dq, J 6.1 , 5.9, $\mathrm{CH}(\mathrm{OH}) \mathrm{M} \mathrm{e]}, 5.78[1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.6, \mathrm{CH}=\mathrm{CH}(\mathrm{OH}) \mathrm{M} \mathrm{e]}, 5.85$ [$1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.6,5.9, \mathrm{CH}=\mathrm{CH}(\mathrm{OH}) \mathrm{M} \mathrm{e}$] and $5.90(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H})$; $\mathrm{m} / \mathrm{z} 206\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 3 \%\right), 150(14), 124$ (100), 79 (24) and 43 (37).

R eferences

1 C. R . Enzell, P ure A ppl. C hem., 1967, 20, 497.
2 USP 3211 157/1963 (Chem. A bstr., 1966, 64, 12568E); Jap P 6002175/1983 (C hem. A bstr., 1985, 103, 4003w).
3 P. Weyerstahl, T. M eisl, K. M ewes and S. N egahdari, Liebigs Ann. C hem., 1991, 19.
4 A . J. A asen, B. K imland, S. A Imgvist and C. R . Enzell, A cta. Chem. Scand., 1972, 26, 2573.
5 R. K aiser and D. Lamparsky, H elv. Chim. Acta, 1978, 61, 2328; T. Fujimori, R. K asuga, H. M atsushita, H. K aneko and M. N oguchi, A gric. Biol. Chem., 1976, 40, 303; E, Demole and D. Berthet, H elv. C him. A cta, 1972, 55, 1866.

6 E. D emole and P. Enggist, H elv. Chim. A cta, 1974, 57, 2087.
7 B. M. Trost and J. L. Stanton, J. Am. Chem. Soc., 1975, 97, 4018; S. Torii, T. Inokuchi and H. Ogawa, Bull. Chem. Soc. J pn., 1979, 52, 1233; O. Takazawa, H. Tamaru, K. K ogami and K. H ayashi, Bull. Chem. Soc. J pn., 1982, 55, 1907.
8 S. Shibata, A. K atsuyama and M. N oguchi, A gric. Biol. Chem., 1978, 42, 195; N. S. Zarghami and D. E. Heinz, Lebensm.-W iss. Technol., 1971, 4, 43.
9 B. R. D avis and S. J. Johnson, J. Chem. Soc., Perkin Trans. 1, 1979, 11, 2840.
10 M. Herderich and P. Winterhalter, J. A gric. Food Chem., 1991, 39, 1270.

11 U SP 3389706/1965 (C hem. Abstr., 1968, 69, 41817q); J. N. Schumacher and L. Vestal, Tob. Sci., 1972, 16, 107.
12 GP 3516 931/1985 (Chem. A bstr., 1987, 106, 66935x); D. L. Roberts and W. A. R hode, Tob. Sci., 1974, 18, 43.
13 J. L. Pousset and J. Poisson, Tetrahedron Lett., 1969, 1173; O. S. Park and L. A . M aldonado, Synth. Commun., 1979, 9, 81.
14 H. M ayer, P ure A ppl. Chem., 1979, 51, 535; O. Isler, C arotenoids; Brikhauser-Verlag, Basel and Stuttgart, 1971.
15 J. N. M arx, Tetrahedron., 1975, 31, 1251.
16 M. Shibagaki, S. Shibata and H. K aneko, A gric. Biol. Chem., 1981, 45, 2911.
17 N. Ito, T. Etoh, H. H agiwara and M. K ato, Synthesis, 1997, 153.
18 S. J. Cristol, W. B arasch and C. H. Tieman, J. Am. Chem. Soc., 1955, 77, 583; O. Isler, M. M ontavon, R. Ruegg and P. Zeller, H elv. Chim. A cta, 1956, 39, 259.
19 G. Weiss, M. K oreeda, and K. M akanishi, J. Chem. Soc., Chem. Commun., 1973, 565.
20 N. Ito and T. Etoh, J. Chem. Soc., Perkin Trans. 1, 1996, 2397 and references cited therein.
21 P. Weyerstahl and T. M eisel, L iebigs A nn. Chem, 1994, 415.
22 M. A. Sefton, I. L. Francis and P. J. Williams, J. A gric. Food Chem., 1990, 38, 2045.
23 M. N. G albraith and D. H. S. H orn, J. Chem. Soc., C hem. Commun., 1972, 113; M . Takasugi, M . A netani, N. K atsui and T. M asamune, Chem. Lett., 1973, 245; S. Satish and D. S. Bhakuni, P hytochemistry, 1972, 11, 2888; H. A chenbach, R. Waibel and B. Raffelsbergar, Phytochemistry, 1981, 20, 1591; C. R. Strauss, B. Wilson and P. J. Williams, Phytochemistry, 1987, 26, 1995; T. T. Jong and M. Y. Jean, J. Chin. Chem. Soc., 1993, 40, 399; A. G. G onzalez, J. A. Guillermo, A. G. Ravelo, I. A. Jimenez and M. P. Gupta, J. N at. Prod., 1994, 57, 400.

24 L. B. Coke, K. L. Stuart and Y. G. Whittle, P lanta, 1975, 127, 21.
25 T. W. Gibson and P. Strassburger, J. O rg. Chem., 1976, 41, 791.
26 W. H. Puterbugh and M. S. N ewman, J. Am. Chem. Soc., 1959, 81, 1611.

27 S. K atsumura and S. I soe, H elv. Chim. A cta, 1982, 65, 1927.
28 J. Wiemann, L. T. Thuan and J. M. Conia, Bull. Soc. Chim. France, 1957, 908.
29 W. J. Genesler, F. Johnson and A. D. Sloan, J. A m. C hem. Soc., 1960, 82,6074.

Paper 6/07028K
Received 15th 0 ctober 1996
A ccepted 29th J anuary 1997

